现在位置:主页 > 全年固定公式规律 > 一文解读垂直搜索引擎和个性化推荐的应

一文解读垂直搜索引擎和个性化推荐的应

作者:admin ? 时间:2017-11-11 ? 浏览:人次

  用户在搜索框中输入香港的过程中可能会错误地输入为“xiang gang”、“xiagngang”等,此时搜索引擎需要做的就是对搜索词进行语义分析识别用户搜索意图进行自动纠错,也就是明白用户想要的是什么,力求做到“用户可以写错,不能答错”。而与此同时,搜索框下方会出现一系列与“xianggang”相关的提示词,例如“香港20周年晚会”、“香港20周年阅兵”等与“香港”相关的内容,减少用户输入时间,提高用户的输入效率。

  不具备多样性,拿今日头条来说,我只是在这一刻喜欢看军事新闻而已,但记下来的推荐内容一直是军事新闻,居心何在?

  不能带给我惊喜。那淘宝来说,我现在想买条裤子,但并不代表我对好看的上衣没兴趣,所以推荐中如果有让我眼前一亮的上衣,我会选择多逛一会。

  因为优秀的个性化推荐并非用户看过什么就接下来推荐什么。而需具备多样性和新颖性,让用户有惊喜感,而这远比简单的同类推荐要复杂。无论是资讯还是电商产品,有些用户在“闲逛”时会带有一些盲目性和消遣性,此时富有惊喜感的产品被推荐可以大大提升用户的好感度。

  资讯类产品如果想要依靠个性化推荐提升用户粘性,增加付费转化,必须明确在哪个场景使用个性化推荐是适当的,是首页的信息流推荐、详情页的相关推荐还是其他使用场景,依靠数据来调整个性化推荐的使用策略。另外,多样性推荐是可以根据占比由企业自行决定的,当然这也需要数据对比支撑不断调整占比,而时效性的资讯也可以根据统计的数据进行合理排布。

  搜索和推荐虽然有很多差异,但两者存在着大量的融合。越来越多的搜索引擎会结合推荐系统的结果,而“相关搜索词”就是推荐系统的产物。比如在一些平台型电商网站中,由于结果数量巨大,且相关性并没有明显差异,因而对搜索结果的个性化排序有一定的运作空间,这里融合运用的个性化推荐技术也对促进成交有良好的帮助。

  推荐系统也大量应用用了搜索引擎的技术,搜索引擎解决运算性能的一个重要的数据结构是倒排索引技术(Inverted Index),而在推荐系统中,一类重要算法是基于内容的推荐(Content-based Recommendation),这其中大量运用了倒排索引、查询、结果归并等方法。另外点击反馈(Click Feedback)算法等也都在两者中大量运用以提升效果。

  有些用户在“闲逛”时会带有一些盲目性和消遣性,此时富有惊喜感的产品被推荐可以大大提升用户的好感度。问题在于如果用户在闲逛的时候总不能发现令他们兴奋的东西,用户会觉得此产品的意义不大。所以实际上个性化推荐是一种相对保险的留存用户手段。如果你也对上衣感兴趣,为什么不去搜上衣或者从类目直接进入上衣板块呢?淘宝是平台,目的是促成交易,应尽量减少不稳定因素。 :)

转载请保留原文链接:http://www.nbjcdq.com/quanniangudinggongshiguilv/116.html上一篇:上一篇:产品经理日报第1000期|微信即将实现“商品搜索”
下一篇:下一篇:没有了